RTextTools: A Supervised Learning Package for Text Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft-Supervised Learning for Text Classification

We propose a new graph-based semisupervised learning (SSL) algorithm and demonstrate its application to document categorization. Each document is represented by a vertex within a weighted undirected graph and our proposed framework minimizes the weighted Kullback-Leibler divergence between distributions that encode the class membership probabilities of each vertex. The proposed objective is con...

متن کامل

Learning a Deep Hybrid Model for Semi-Supervised Text Classification

We present a novel fine-tuning algorithm in a deep hybrid architecture for semisupervised text classification. During each increment of the online learning process, the fine-tuning algorithm serves as a top-down mechanism for pseudo-jointly modifying model parameters following a bottom-up generative learning pass. The resulting model, trained under what we call the Bottom-Up-Top-Down learning a...

متن کامل

Text Passage Classification Using Supervised Learning

In this paper, we describe a method for text passage classification or extraction by means of supervised machine learning and analytically identifying passages. The underlying characteristic of the method lies in the utilization of the resulting classification, which leads to the classification of the portion of a document in a high dimensional feature space into a low dimensional space which i...

متن کامل

Semi-supervised learning for text classification using feature affinity regularization

Most conventional semi-supervised learning methods attempt to directly include unlabeled data into training objectives. This paper presents an alternative approach that learns feature affinity information from unlabeled data, which is incorporated into the training objective as regularization of a maximum entropy model. The regularization favors models for which correlated features have similar...

متن کامل

Semi-Supervised Representation Learning for Cross-Lingual Text Classification

Cross-lingual adaptation aims to learn a prediction model in a label-scarce target language by exploiting labeled data from a labelrich source language. An effective crosslingual adaptation system can substantially reduce the manual annotation effort required in many natural language processing tasks. In this paper, we propose a new cross-lingual adaptation approach for document classification ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The R Journal

سال: 2013

ISSN: 2073-4859

DOI: 10.32614/rj-2013-001